| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 107 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 590 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-in1 576 ax-in2 577 |
| This theorem is referenced by: dcan 875 bianfd 889 frecsuclem3 6013 xrrebnd 8886 fzpreddisj 9088 gcdsupex 10349 gcdsupcl 10350 nndvdslegcd 10357 divgcdnn 10366 sqgcd 10418 coprm 10523 |
| Copyright terms: Public domain | W3C validator |