| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intssunim | GIF version | ||
| Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
| Ref | Expression |
|---|---|
| intssunim | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2m 3329 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 2 | 1 | ex 113 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
| 3 | vex 2604 | . . . 4 ⊢ 𝑦 ∈ V | |
| 4 | 3 | elint2 3643 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
| 5 | eluni2 3605 | . . 3 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 6 | 2, 4, 5 | 3imtr4g 203 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝐴 → 𝑦 ∈ ∪ 𝐴)) |
| 7 | 6 | ssrdv 3005 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1421 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 ⊆ wss 2973 ∪ cuni 3601 ∩ cint 3636 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 df-int 3637 |
| This theorem is referenced by: intssuni2m 3660 |
| Copyright terms: Public domain | W3C validator |