| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotaeq | GIF version | ||
| Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| iotaeq | ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsb1 1720 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
| 2 | df-clab 2068 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 3 | df-clab 2068 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 4 | 1, 2, 3 | 3bitr4g 221 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜑})) |
| 5 | 4 | eqrdv 2079 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑}) |
| 6 | 5 | eqeq1d 2089 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜑} = {𝑧})) |
| 7 | 6 | abbidv 2196 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}}) |
| 8 | 7 | unieqd 3612 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}}) |
| 9 | df-iota 4887 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
| 10 | df-iota 4887 | . 2 ⊢ (℩𝑦𝜑) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}} | |
| 11 | 8, 9, 10 | 3eqtr4g 2138 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 = wceq 1284 ∈ wcel 1433 [wsb 1685 {cab 2067 {csn 3398 ∪ cuni 3601 ℩cio 4885 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-uni 3602 df-iota 4887 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |