ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieqd GIF version

Theorem unieqd 3612
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.)
Hypothesis
Ref Expression
unieqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
unieqd (𝜑 𝐴 = 𝐵)

Proof of Theorem unieqd
StepHypRef Expression
1 unieqd.1 . 2 (𝜑𝐴 = 𝐵)
2 unieq 3610 . 2 (𝐴 = 𝐵 𝐴 = 𝐵)
31, 2syl 14 1 (𝜑 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-uni 3602
This theorem is referenced by:  uniprg  3616  unisng  3618  unisn3  4198  onsucuni2  4307  opswapg  4827  elxp4  4828  elxp5  4829  iotaeq  4895  iotabi  4896  uniabio  4897  funfvdm  5257  funfvdm2  5258  fvun1  5260  fniunfv  5422  funiunfvdm  5423  1stvalg  5789  2ndvalg  5790  fo1st  5804  fo2nd  5805  f1stres  5806  f2ndres  5807  2nd1st  5826  cnvf1olem  5865  brtpos2  5889  dftpos4  5901  tpostpos  5902  recseq  5944  tfrexlem  5971  xpcomco  6323  xpassen  6327  xpdom2  6328  supeq1  6399  supeq2  6402  supeq3  6403  supeq123d  6404  dfinfre  8034
  Copyright terms: Public domain W3C validator