ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moeq3dc GIF version

Theorem moeq3dc 2768
Description: "At most one" property of equality (split into 3 cases). (Contributed by Jim Kingdon, 7-Jul-2018.)
Hypotheses
Ref Expression
moeq3dc.1 𝐴 ∈ V
moeq3dc.2 𝐵 ∈ V
moeq3dc.3 𝐶 ∈ V
moeq3dc.4 ¬ (𝜑𝜓)
Assertion
Ref Expression
moeq3dc (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
Distinct variable groups:   𝜑,𝑥   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem moeq3dc
StepHypRef Expression
1 moeq3dc.1 . . 3 𝐴 ∈ V
2 moeq3dc.2 . . 3 𝐵 ∈ V
3 moeq3dc.3 . . 3 𝐶 ∈ V
4 moeq3dc.4 . . 3 ¬ (𝜑𝜓)
51, 2, 3, 4eueq3dc 2766 . 2 (DECID 𝜑 → (DECID 𝜓 → ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
6 eumo 1973 . 2 (∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)))
75, 6syl6 33 1 (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 661  DECID wdc 775  w3o 918   = wceq 1284  wcel 1433  ∃!weu 1941  ∃*wmo 1942  Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-v 2603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator