| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an13 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1257 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 414 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: pitonnlem1p1 7014 mulid1 7116 addltmul 8267 eluzaddi 8645 fz01en 9072 fznatpl1 9093 expubnd 9533 bernneq 9593 bernneq2 9594 dvds0 10210 odd2np1 10272 opoe 10295 gcdid 10377 |
| Copyright terms: Public domain | W3C validator |