ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expubnd GIF version

Theorem expubnd 9533
Description: An upper bound on 𝐴𝑁 when 2 ≤ 𝐴. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
expubnd ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))

Proof of Theorem expubnd
StepHypRef Expression
1 simp1 938 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝐴 ∈ ℝ)
2 2re 8109 . . . . 5 2 ∈ ℝ
3 peano2rem 7375 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
4 remulcl 7101 . . . . 5 ((2 ∈ ℝ ∧ (𝐴 − 1) ∈ ℝ) → (2 · (𝐴 − 1)) ∈ ℝ)
52, 3, 4sylancr 405 . . . 4 (𝐴 ∈ ℝ → (2 · (𝐴 − 1)) ∈ ℝ)
653ad2ant1 959 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (2 · (𝐴 − 1)) ∈ ℝ)
7 simp2 939 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝑁 ∈ ℕ0)
8 0le2 8129 . . . . . . 7 0 ≤ 2
9 0re 7119 . . . . . . . 8 0 ∈ ℝ
10 letr 7194 . . . . . . . 8 ((0 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
119, 2, 10mp3an12 1258 . . . . . . 7 (𝐴 ∈ ℝ → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
128, 11mpani 420 . . . . . 6 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → 0 ≤ 𝐴))
1312imp 122 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴)
14 resubcl 7372 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐴 − 2) ∈ ℝ)
152, 14mpan2 415 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 2) ∈ ℝ)
16 leadd2 7535 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
172, 16mp3an1 1255 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1815, 17mpdan 412 . . . . . . 7 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1918biimpa 290 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴))
20 recn 7106 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21 2cn 8110 . . . . . . . 8 2 ∈ ℂ
22 npcan 7317 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 − 2) + 2) = 𝐴)
2320, 21, 22sylancl 404 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 2) = 𝐴)
2423adantr 270 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) = 𝐴)
25 ax-1cn 7069 . . . . . . . . . 10 1 ∈ ℂ
26 subdi 7489 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
2721, 25, 26mp3an13 1259 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
28 2times 8160 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
29 2t1e2 8185 . . . . . . . . . . 11 (2 · 1) = 2
3029a1i 9 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 1) = 2)
3128, 30oveq12d 5550 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · 𝐴) − (2 · 1)) = ((𝐴 + 𝐴) − 2))
32 addsub 7319 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3321, 32mp3an3 1257 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3433anidms 389 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3527, 31, 343eqtrrd 2118 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3620, 35syl 14 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3736adantr 270 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3819, 24, 373brtr3d 3814 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 𝐴 ≤ (2 · (𝐴 − 1)))
3913, 38jca 300 . . . 4 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
40393adant2 957 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
41 leexp1a 9531 . . 3 (((𝐴 ∈ ℝ ∧ (2 · (𝐴 − 1)) ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1)))) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
421, 6, 7, 40, 41syl31anc 1172 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
433recnd 7147 . . . 4 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ)
44 mulexp 9515 . . . . 5 ((2 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4521, 44mp3an1 1255 . . . 4 (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4643, 45sylan 277 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
47463adant3 958 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4842, 47breqtrd 3809 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981  1c1 6982   + caddc 6984   · cmul 6986  cle 7154  cmin 7279  2c2 8089  0cn0 8288  cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator