ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds0 GIF version

Theorem dvds0 10210
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0 (𝑁 ∈ ℤ → 𝑁 ∥ 0)

Proof of Theorem dvds0
StepHypRef Expression
1 zcn 8356 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21mul02d 7496 . 2 (𝑁 ∈ ℤ → (0 · 𝑁) = 0)
3 0z 8362 . . 3 0 ∈ ℤ
4 dvds0lem 10205 . . . 4 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0)
54ex 113 . . 3 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
63, 3, 5mp3an13 1259 . 2 (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
72, 6mpd 13 1 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 919   = wceq 1284  wcel 1433   class class class wbr 3785  (class class class)co 5532  0cc0 6981   · cmul 6986  cz 8351  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-neg 7282  df-z 8352  df-dvds 10196
This theorem is referenced by:  0dvds  10215  alzdvds  10254  fzo0dvdseq  10257  z0even  10311  gcddvds  10355  gcd0id  10370  bezoutlemmain  10387  dfgcd3  10399  dfgcd2  10403  dvdssq  10420  dvdslcm  10451  lcmdvds  10461  mulgcddvds  10476
  Copyright terms: Public domain W3C validator