ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid GIF version

Theorem mtbid 629
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min (𝜑 → ¬ 𝜓)
mtbid.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mtbid (𝜑 → ¬ 𝜒)

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2 (𝜑 → ¬ 𝜓)
2 mtbid.maj . . 3 (𝜑 → (𝜓𝜒))
32biimprd 156 . 2 (𝜑 → (𝜒𝜓))
41, 3mtod 621 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  sylnib  633  eqneltrrd  2175  neleqtrd  2176  eueq3dc  2766  efrirr  4108  nqnq0pi  6628  zdclt  8425  frec2uzf1od  9408  expnegap0  9484  ibcval5  9690  rpdvds  10481  oddpwdclemodd  10550
  Copyright terms: Public domain W3C validator