ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnegap0 GIF version

Theorem expnegap0 9484
Description: Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
Assertion
Ref Expression
expnegap0 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Proof of Theorem expnegap0
StepHypRef Expression
1 elnn0 8290 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnne0 8067 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
32adantl 271 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4 nncn 8047 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
54adantl 271 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
65negeq0d 7411 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 = 0 ↔ -𝑁 = 0))
76necon3abid 2284 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
83, 7mpbid 145 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ -𝑁 = 0)
98iffalsed 3361 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁)))) = if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁))))
10 nnnn0 8295 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1110adantl 271 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
12 nn0nlt0 8314 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ¬ 𝑁 < 0)
1311, 12syl 14 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0)
1411nn0red 8342 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
1514lt0neg1d 7616 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 < 0 ↔ 0 < -𝑁))
1613, 15mtbid 629 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 0 < -𝑁)
1716iffalsed 3361 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁))) = (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁)))
185negnegd 7410 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1918fveq2d 5202 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
2019oveq2d 5548 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁)))
219, 17, 203eqtrd 2117 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁)))
2221adantlr 460 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁)))
23 simp1 938 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
24 simp3 940 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2524nnzd 8468 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
2625znegcld 8471 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → -𝑁 ∈ ℤ)
27 simp2 939 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝐴 # 0)
2827orcd 684 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → (𝐴 # 0 ∨ 0 ≤ -𝑁))
29 expival 9478 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ -𝑁)) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁)))))
3023, 26, 28, 29syl3anc 1169 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁)))))
31303expa 1138 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘--𝑁)))))
32 expinnval 9479 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
3332oveq2d 5548 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁)))
3433adantlr 460 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁)))
3522, 31, 343eqtr4d 2123 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
36 1div1e1 7792 . . . . . . 7 (1 / 1) = 1
3736eqcomi 2085 . . . . . 6 1 = (1 / 1)
38 negeq 7301 . . . . . . . . 9 (𝑁 = 0 → -𝑁 = -0)
39 neg0 7354 . . . . . . . . 9 -0 = 0
4038, 39syl6eq 2129 . . . . . . . 8 (𝑁 = 0 → -𝑁 = 0)
4140oveq2d 5548 . . . . . . 7 (𝑁 = 0 → (𝐴↑-𝑁) = (𝐴↑0))
42 exp0 9480 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
4341, 42sylan9eqr 2135 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = 1)
44 oveq2 5540 . . . . . . . 8 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
4544, 42sylan9eqr 2135 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
4645oveq2d 5548 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (1 / (𝐴𝑁)) = (1 / 1))
4737, 43, 463eqtr4a 2139 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4847adantlr 460 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4935, 48jaodan 743 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
501, 49sylan2b 281 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
51503impa 1133 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 661  w3a 919   = wceq 1284  wcel 1433  wne 2245  ifcif 3351  {csn 3398   class class class wbr 3785   × cxp 4361  cfv 4922  (class class class)co 5532  cc 6979  0cc0 6981  1c1 6982   · cmul 6986   < clt 7153  cle 7154  -cneg 7280   # cap 7681   / cdiv 7760  cn 8039  0cn0 8288  cz 8351  seqcseq 9431  cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  expineg2  9485  expn1ap0  9486  expnegzap  9510
  Copyright terms: Public domain W3C validator