| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | Unicode version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min |
|
| mtbid.maj |
|
| Ref | Expression |
|---|---|
| mtbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min |
. 2
| |
| 2 | mtbid.maj |
. . 3
| |
| 3 | 2 | biimprd 156 |
. 2
|
| 4 | 1, 3 | mtod 621 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: sylnib 633 eqneltrrd 2175 neleqtrd 2176 eueq3dc 2766 efrirr 4108 nqnq0pi 6628 zdclt 8425 frec2uzf1od 9408 expnegap0 9484 ibcval5 9690 rpdvds 10481 oddpwdclemodd 10550 |
| Copyright terms: Public domain | W3C validator |