ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0i GIF version

Theorem n0i 3256
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2615. (Contributed by NM, 31-Dec-1993.)
Assertion
Ref Expression
n0i (𝐵𝐴 → ¬ 𝐴 = ∅)

Proof of Theorem n0i
StepHypRef Expression
1 noel 3255 . . 3 ¬ 𝐵 ∈ ∅
2 eleq2 2142 . . 3 (𝐴 = ∅ → (𝐵𝐴𝐵 ∈ ∅))
31, 2mtbiri 632 . 2 (𝐴 = ∅ → ¬ 𝐵𝐴)
43con2i 589 1 (𝐵𝐴 → ¬ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1284  wcel 1433  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-nul 3252
This theorem is referenced by:  ne0i  3257  unidif0  3941  iin0r  3943  nnm00  6125  enq0tr  6624
  Copyright terms: Public domain W3C validator