ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0r GIF version

Theorem iin0r 3943
Description: If an indexed intersection of the empty set is empty, the index set is non-empty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0r ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iin0r
StepHypRef Expression
1 0ex 3905 . . . . 5 ∅ ∈ V
2 n0i 3256 . . . . 5 (∅ ∈ V → ¬ V = ∅)
31, 2ax-mp 7 . . . 4 ¬ V = ∅
4 0iin 3736 . . . . 5 𝑥 ∈ ∅ ∅ = V
54eqeq1i 2088 . . . 4 ( 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅)
63, 5mtbir 628 . . 3 ¬ 𝑥 ∈ ∅ ∅ = ∅
7 iineq1 3692 . . . 4 (𝐴 = ∅ → 𝑥𝐴 ∅ = 𝑥 ∈ ∅ ∅)
87eqeq1d 2089 . . 3 (𝐴 = ∅ → ( 𝑥𝐴 ∅ = ∅ ↔ 𝑥 ∈ ∅ ∅ = ∅))
96, 8mtbiri 632 . 2 (𝐴 = ∅ → ¬ 𝑥𝐴 ∅ = ∅)
109necon2ai 2299 1 ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1284  wcel 1433  wne 2245  Vcvv 2601  c0 3251   ciin 3679
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-v 2603  df-dif 2975  df-nul 3252  df-iin 3681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator