| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3d | GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.) |
| Ref | Expression |
|---|---|
| necon3d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon3d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) | |
| 2 | 1 | necon3ad 2287 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵)) |
| 3 | df-ne 2246 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 4 | 2, 3 | syl6ibr 160 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1284 ≠ wne 2245 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 df-ne 2246 |
| This theorem is referenced by: necon3i 2293 pm13.18 2326 ssn0 3286 suppssfv 5728 suppssov1 5729 nnmord 6113 findcard2 6373 findcard2s 6374 addn0nid 7478 nn0n0n1ge2 8418 divgcdcoprmex 10484 |
| Copyright terms: Public domain | W3C validator |