ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3d GIF version

Theorem necon3d 2289
Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.)
Hypothesis
Ref Expression
necon3d.1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon3d (𝜑 → (𝐶𝐷𝐴𝐵))

Proof of Theorem necon3d
StepHypRef Expression
1 necon3d.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
21necon3ad 2287 . 2 (𝜑 → (𝐶𝐷 → ¬ 𝐴 = 𝐵))
3 df-ne 2246 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
42, 3syl6ibr 160 1 (𝜑 → (𝐶𝐷𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1284  wne 2245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577
This theorem depends on definitions:  df-bi 115  df-ne 2246
This theorem is referenced by:  necon3i  2293  pm13.18  2326  ssn0  3286  suppssfv  5728  suppssov1  5729  nnmord  6113  findcard2  6373  findcard2s  6374  addn0nid  7478  nn0n0n1ge2  8418  divgcdcoprmex  10484
  Copyright terms: Public domain W3C validator