ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssov1 GIF version

Theorem suppssov1 5729
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssov1.s (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
Assertion
Ref Expression
suppssov1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑥,𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐴𝑉)
2 elex 2610 . . . . . . . 8 (𝐴𝑉𝐴 ∈ V)
31, 2syl 14 . . . . . . 7 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
43adantr 270 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V)
5 eldifsni 3518 . . . . . . . 8 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
6 suppssov1.b . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝐵𝑅)
7 suppssov1.o . . . . . . . . . . . . 13 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
87ralrimiva 2434 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
98adantr 270 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
10 oveq2 5540 . . . . . . . . . . . . 13 (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵))
1110eqeq1d 2089 . . . . . . . . . . . 12 (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1211rspcva 2699 . . . . . . . . . . 11 ((𝐵𝑅 ∧ ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍) → (𝑌𝑂𝐵) = 𝑍)
136, 9, 12syl2anc 403 . . . . . . . . . 10 ((𝜑𝑥𝐷) → (𝑌𝑂𝐵) = 𝑍)
14 oveq1 5539 . . . . . . . . . . 11 (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵))
1514eqeq1d 2089 . . . . . . . . . 10 (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1613, 15syl5ibrcom 155 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
1716necon3d 2289 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐴𝑌))
185, 17syl5 32 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴𝑌))
1918imp 122 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴𝑌)
20 eldifsn 3517 . . . . . 6 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
214, 19, 20sylanbrc 408 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌}))
2221ex 113 . . . 4 ((𝜑𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
2322ss2rabdv 3075 . . 3 (𝜑 → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
24 eqid 2081 . . . 4 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
2524mptpreima 4834 . . 3 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})}
26 eqid 2081 . . . 4 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
2726mptpreima 4834 . . 3 ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})}
2823, 25, 273sstr4g 3040 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ ((𝑥𝐷𝐴) “ (V ∖ {𝑌})))
29 suppssov1.s . 2 (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
3028, 29sstrd 3009 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wne 2245  wral 2348  {crab 2352  Vcvv 2601  cdif 2970  wss 2973  {csn 3398  cmpt 3839  ccnv 4362  cima 4366  (class class class)co 5532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fv 4930  df-ov 5535
This theorem is referenced by:  suppssof1  5748
  Copyright terms: Public domain W3C validator