ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmord GIF version

Theorem nnmord 6113
Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmord ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))

Proof of Theorem nnmord
StepHypRef Expression
1 nnmordi 6112 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
21ex 113 . . . . 5 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
32com23 77 . . . 4 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
43impd 251 . . 3 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
543adant1 956 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
6 ne0i 3257 . . . . . . . 8 ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (𝐶 ·𝑜 𝐵) ≠ ∅)
7 nnm0r 6081 . . . . . . . . . 10 (𝐵 ∈ ω → (∅ ·𝑜 𝐵) = ∅)
8 oveq1 5539 . . . . . . . . . . 11 (𝐶 = ∅ → (𝐶 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
98eqeq1d 2089 . . . . . . . . . 10 (𝐶 = ∅ → ((𝐶 ·𝑜 𝐵) = ∅ ↔ (∅ ·𝑜 𝐵) = ∅))
107, 9syl5ibrcom 155 . . . . . . . . 9 (𝐵 ∈ ω → (𝐶 = ∅ → (𝐶 ·𝑜 𝐵) = ∅))
1110necon3d 2289 . . . . . . . 8 (𝐵 ∈ ω → ((𝐶 ·𝑜 𝐵) ≠ ∅ → 𝐶 ≠ ∅))
126, 11syl5 32 . . . . . . 7 (𝐵 ∈ ω → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐶 ≠ ∅))
1312adantr 270 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐶 ≠ ∅))
14 nn0eln0 4359 . . . . . . 7 (𝐶 ∈ ω → (∅ ∈ 𝐶𝐶 ≠ ∅))
1514adantl 271 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶𝐶 ≠ ∅))
1613, 15sylibrd 167 . . . . 5 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → ∅ ∈ 𝐶))
17163adant1 956 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → ∅ ∈ 𝐶))
18 oveq2 5540 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵))
1918a1i 9 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝐵 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵)))
20 nnmordi 6112 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
21203adantl2 1095 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
2219, 21orim12d 732 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
2322con3d 593 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
24 simpl3 943 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐶 ∈ ω)
25 simpl1 941 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐴 ∈ ω)
26 nnmcl 6083 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·𝑜 𝐴) ∈ ω)
2724, 25, 26syl2anc 403 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ ω)
28 simpl2 942 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐵 ∈ ω)
29 nnmcl 6083 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·𝑜 𝐵) ∈ ω)
3024, 28, 29syl2anc 403 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐵) ∈ ω)
31 nntri2 6096 . . . . . . . 8 (((𝐶 ·𝑜 𝐴) ∈ ω ∧ (𝐶 ·𝑜 𝐵) ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
3227, 30, 31syl2anc 403 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
33 nntri2 6096 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
3425, 28, 33syl2anc 403 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
3523, 32, 343imtr4d 201 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵))
3635ex 113 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵)))
3736com23 77 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (∅ ∈ 𝐶𝐴𝐵)))
3817, 37mpdd 40 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵))
3938, 17jcad 301 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (𝐴𝐵 ∧ ∅ ∈ 𝐶)))
405, 39impbid 127 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3a 919   = wceq 1284  wcel 1433  wne 2245  c0 3251  ωcom 4331  (class class class)co 5532   ·𝑜 comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  nnmword  6114  ltmpig  6529
  Copyright terms: Public domain W3C validator