![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neldifsn | GIF version |
Description: 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2254 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
2 | eldifsni 3518 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
3 | 1, 2 | mto 620 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 1433 ≠ wne 2245 ∖ cdif 2970 {csn 3398 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-v 2603 df-dif 2975 df-sn 3404 |
This theorem is referenced by: neldifsnd 3520 findcard2s 6374 |
Copyright terms: Public domain | W3C validator |