ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nex GIF version

Theorem nex 1429
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
Hypothesis
Ref Expression
nex.1 ¬ 𝜑
Assertion
Ref Expression
nex ¬ ∃𝑥𝜑

Proof of Theorem nex
StepHypRef Expression
1 alnex 1428 . 2 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 nex.1 . 2 ¬ 𝜑
31, 2mpgbi 1381 1 ¬ ∃𝑥𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-ie2 1423
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290
This theorem is referenced by:  ru  2814  0nelxp  4390  0xp  4438  dm0  4567  co02  4854  0fv  5229  mpt20  5594  0npr  6673
  Copyright terms: Public domain W3C validator