![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nelxp | GIF version |
Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 2604 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opnzi 3990 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
4 | simpl 107 | . . . . . . 7 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∅ = 〈𝑥, 𝑦〉) | |
5 | 4 | eqcomd 2086 | . . . . . 6 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 〈𝑥, 𝑦〉 = ∅) |
6 | 5 | necon3ai 2294 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ → ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | ax-mp 7 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
8 | 7 | nex 1429 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
9 | 8 | nex 1429 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
10 | elxp 4380 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
11 | 9, 10 | mtbir 628 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ≠ wne 2245 ∅c0 3251 〈cop 3401 × cxp 4361 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 |
This theorem is referenced by: dmsn0 4808 nfunv 4953 reldmtpos 5891 dmtpos 5894 0ncn 7000 |
Copyright terms: Public domain | W3C validator |