ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelxp GIF version

Theorem 0nelxp 4390
Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelxp ¬ ∅ ∈ (𝐴 × 𝐵)

Proof of Theorem 0nelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . . . . 6 𝑥 ∈ V
2 vex 2604 . . . . . 6 𝑦 ∈ V
31, 2opnzi 3990 . . . . 5 𝑥, 𝑦⟩ ≠ ∅
4 simpl 107 . . . . . . 7 ((∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ∅ = ⟨𝑥, 𝑦⟩)
54eqcomd 2086 . . . . . 6 ((∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ⟨𝑥, 𝑦⟩ = ∅)
65necon3ai 2294 . . . . 5 (⟨𝑥, 𝑦⟩ ≠ ∅ → ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
73, 6ax-mp 7 . . . 4 ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
87nex 1429 . . 3 ¬ ∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
98nex 1429 . 2 ¬ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
10 elxp 4380 . 2 (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
119, 10mtbir 628 1 ¬ ∅ ∈ (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102   = wceq 1284  wex 1421  wcel 1433  wne 2245  c0 3251  cop 3401   × cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369
This theorem is referenced by:  dmsn0  4808  nfunv  4953  reldmtpos  5891  dmtpos  5894  0ncn  7000
  Copyright terms: Public domain W3C validator