| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfdc | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.) |
| Ref | Expression |
|---|---|
| nfdc.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfdc | ⊢ Ⅎ𝑥DECID 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 776 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | nfdc.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1588 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 2, 3 | nfor 1506 | . 2 ⊢ Ⅎ𝑥(𝜑 ∨ ¬ 𝜑) |
| 5 | 1, 4 | nfxfr 1403 | 1 ⊢ Ⅎ𝑥DECID 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∨ wo 661 DECID wdc 775 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-gen 1378 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-tru 1287 df-fal 1290 df-nf 1390 |
| This theorem is referenced by: 19.32dc 1609 exfzdc 9249 zsupcllemstep 10341 infssuzex 10345 |
| Copyright terms: Public domain | W3C validator |