ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exfzdc GIF version

Theorem exfzdc 9249
Description: Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.)
Hypotheses
Ref Expression
exfzdc.1 (𝜑𝑀 ∈ ℤ)
exfzdc.2 (𝜑𝑁 ∈ ℤ)
exfzdc.3 ((𝜑𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓)
Assertion
Ref Expression
exfzdc (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝜑,𝑛
Allowed substitution hint:   𝜓(𝑛)

Proof of Theorem exfzdc
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exfzdc.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 exfzdc.2 . . . . 5 (𝜑𝑁 ∈ ℤ)
3 eluz 8632 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
41, 2, 3syl2anc 403 . . . 4 (𝜑 → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
54biimpar 291 . . 3 ((𝜑𝑀𝑁) → 𝑁 ∈ (ℤ𝑀))
6 simpl 107 . . 3 ((𝜑𝑀𝑁) → 𝜑)
7 eluzfz2 9051 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
8 oveq2 5540 . . . . . . . 8 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
98rexeqdv 2556 . . . . . . 7 (𝑤 = 𝑀 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑀)𝜓))
109dcbid 781 . . . . . 6 (𝑤 = 𝑀 → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...𝑀)𝜓))
1110imbi2d 228 . . . . 5 (𝑤 = 𝑀 → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...𝑀)𝜓)))
12 oveq2 5540 . . . . . . . 8 (𝑤 = 𝑦 → (𝑀...𝑤) = (𝑀...𝑦))
1312rexeqdv 2556 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑦)𝜓))
1413dcbid 781 . . . . . 6 (𝑤 = 𝑦 → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...𝑦)𝜓))
1514imbi2d 228 . . . . 5 (𝑤 = 𝑦 → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...𝑦)𝜓)))
16 oveq2 5540 . . . . . . . 8 (𝑤 = (𝑦 + 1) → (𝑀...𝑤) = (𝑀...(𝑦 + 1)))
1716rexeqdv 2556 . . . . . . 7 (𝑤 = (𝑦 + 1) → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓))
1817dcbid 781 . . . . . 6 (𝑤 = (𝑦 + 1) → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓))
1918imbi2d 228 . . . . 5 (𝑤 = (𝑦 + 1) → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)))
20 oveq2 5540 . . . . . . . 8 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2120rexeqdv 2556 . . . . . . 7 (𝑤 = 𝑁 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑁)𝜓))
2221dcbid 781 . . . . . 6 (𝑤 = 𝑁 → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...𝑁)𝜓))
2322imbi2d 228 . . . . 5 (𝑤 = 𝑁 → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)))
24 eluzfz1 9050 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
2524adantl 271 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ (𝑀...𝑁))
26 exfzdc.3 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓)
2726ralrimiva 2434 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓)
2827adantr 270 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ𝑀)) → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓)
29 nfsbc1v 2833 . . . . . . . . . 10 𝑛[𝑀 / 𝑛]𝜓
3029nfdc 1589 . . . . . . . . 9 𝑛DECID [𝑀 / 𝑛]𝜓
31 sbceq1a 2824 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝜓[𝑀 / 𝑛]𝜓))
3231dcbid 781 . . . . . . . . 9 (𝑛 = 𝑀 → (DECID 𝜓DECID [𝑀 / 𝑛]𝜓))
3330, 32rspc 2695 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓DECID [𝑀 / 𝑛]𝜓))
3425, 28, 33sylc 61 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID [𝑀 / 𝑛]𝜓)
351adantr 270 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
36 fzsn 9084 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3735, 36syl 14 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑀) = {𝑀})
3837rexeqdv 2556 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ𝑀)) → (∃𝑛 ∈ (𝑀...𝑀)𝜓 ↔ ∃𝑛 ∈ {𝑀}𝜓))
39 rexsns 3432 . . . . . . . . 9 (∃𝑛 ∈ {𝑀}𝜓[𝑀 / 𝑛]𝜓)
4038, 39syl6bb 194 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ𝑀)) → (∃𝑛 ∈ (𝑀...𝑀)𝜓[𝑀 / 𝑛]𝜓))
4140dcbid 781 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → (DECID𝑛 ∈ (𝑀...𝑀)𝜓DECID [𝑀 / 𝑛]𝜓))
4234, 41mpbird 165 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID𝑛 ∈ (𝑀...𝑀)𝜓)
4342expcom 114 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝜑DECID𝑛 ∈ (𝑀...𝑀)𝜓))
44 simpr 108 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ (𝑀...𝑦)𝜓)
45 fzofzp1 9236 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑀..^𝑁) → (𝑦 + 1) ∈ (𝑀...𝑁))
4645ad2antrr 471 . . . . . . . . . . . 12 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (𝑦 + 1) ∈ (𝑀...𝑁))
4727ad2antlr 472 . . . . . . . . . . . 12 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓)
48 nfsbc1v 2833 . . . . . . . . . . . . . 14 𝑛[(𝑦 + 1) / 𝑛]𝜓
4948nfdc 1589 . . . . . . . . . . . . 13 𝑛DECID [(𝑦 + 1) / 𝑛]𝜓
50 sbceq1a 2824 . . . . . . . . . . . . . 14 (𝑛 = (𝑦 + 1) → (𝜓[(𝑦 + 1) / 𝑛]𝜓))
5150dcbid 781 . . . . . . . . . . . . 13 (𝑛 = (𝑦 + 1) → (DECID 𝜓DECID [(𝑦 + 1) / 𝑛]𝜓))
5249, 51rspc 2695 . . . . . . . . . . . 12 ((𝑦 + 1) ∈ (𝑀...𝑁) → (∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓DECID [(𝑦 + 1) / 𝑛]𝜓))
5346, 47, 52sylc 61 . . . . . . . . . . 11 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID [(𝑦 + 1) / 𝑛]𝜓)
54 rexsns 3432 . . . . . . . . . . . 12 (∃𝑛 ∈ {(𝑦 + 1)}𝜓[(𝑦 + 1) / 𝑛]𝜓)
5554dcbii 780 . . . . . . . . . . 11 (DECID𝑛 ∈ {(𝑦 + 1)}𝜓DECID [(𝑦 + 1) / 𝑛]𝜓)
5653, 55sylibr 132 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ {(𝑦 + 1)}𝜓)
57 dcor 876 . . . . . . . . . 10 (DECID𝑛 ∈ (𝑀...𝑦)𝜓 → (DECID𝑛 ∈ {(𝑦 + 1)}𝜓DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓)))
5844, 56, 57sylc 61 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))
59 rexun 3152 . . . . . . . . . 10 (∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓 ↔ (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))
6059dcbii 780 . . . . . . . . 9 (DECID𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))
6158, 60sylibr 132 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓)
62 elfzouz 9161 . . . . . . . . . . . 12 (𝑦 ∈ (𝑀..^𝑁) → 𝑦 ∈ (ℤ𝑀))
6362ad2antrr 471 . . . . . . . . . . 11 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → 𝑦 ∈ (ℤ𝑀))
64 fzsuc 9086 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
6563, 64syl 14 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
6665rexeqdv 2556 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓 ↔ ∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓))
6766dcbid 781 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓DECID𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓))
6861, 67mpbird 165 . . . . . . 7 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)
6968exp31 356 . . . . . 6 (𝑦 ∈ (𝑀..^𝑁) → (𝜑 → (DECID𝑛 ∈ (𝑀...𝑦)𝜓DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)))
7069a2d 26 . . . . 5 (𝑦 ∈ (𝑀..^𝑁) → ((𝜑DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (𝜑DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)))
7111, 15, 19, 23, 43, 70fzind2 9248 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓))
727, 71syl 14 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓))
735, 6, 72sylc 61 . 2 ((𝜑𝑀𝑁) → DECID𝑛 ∈ (𝑀...𝑁)𝜓)
74 rex0 3265 . . . . 5 ¬ ∃𝑛 ∈ ∅ 𝜓
75 zltnle 8397 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
762, 1, 75syl2anc 403 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
7776biimpar 291 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀𝑁) → 𝑁 < 𝑀)
78 fzn 9061 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
791, 2, 78syl2anc 403 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
8079adantr 270 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀𝑁) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
8177, 80mpbid 145 . . . . . 6 ((𝜑 ∧ ¬ 𝑀𝑁) → (𝑀...𝑁) = ∅)
8281rexeqdv 2556 . . . . 5 ((𝜑 ∧ ¬ 𝑀𝑁) → (∃𝑛 ∈ (𝑀...𝑁)𝜓 ↔ ∃𝑛 ∈ ∅ 𝜓))
8374, 82mtbiri 632 . . . 4 ((𝜑 ∧ ¬ 𝑀𝑁) → ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓)
8483olcd 685 . . 3 ((𝜑 ∧ ¬ 𝑀𝑁) → (∃𝑛 ∈ (𝑀...𝑁)𝜓 ∨ ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓))
85 df-dc 776 . . 3 (DECID𝑛 ∈ (𝑀...𝑁)𝜓 ↔ (∃𝑛 ∈ (𝑀...𝑁)𝜓 ∨ ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓))
8684, 85sylibr 132 . 2 ((𝜑 ∧ ¬ 𝑀𝑁) → DECID𝑛 ∈ (𝑀...𝑁)𝜓)
87 zdcle 8424 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
88 exmiddc 777 . . . 4 (DECID 𝑀𝑁 → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
8987, 88syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
901, 2, 89syl2anc 403 . 2 (𝜑 → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
9173, 86, 90mpjaodan 744 1 (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  DECID wdc 775   = wceq 1284  wcel 1433  wral 2348  wrex 2349  [wsbc 2815  cun 2971  c0 3251  {csn 3398   class class class wbr 3785  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984   < clt 7153  cle 7154  cz 8351  cuz 8619  ...cfz 9029  ..^cfzo 9152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by:  prmind2  10502
  Copyright terms: Public domain W3C validator