| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnae | GIF version | ||
| Description: All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 1647 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
| 2 | 1 | nfn 1588 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 |
| This theorem is referenced by: sbequ6 1706 dvelimfv 1928 nfsb4t 1931 |
| Copyright terms: Public domain | W3C validator |