| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnt | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ¬ 𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.) |
| Ref | Expression |
|---|---|
| nfnt | ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnf1 1476 | . 2 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 | |
| 2 | df-nf 1390 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 3 | hbnt 1583 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 4 | 2, 3 | sylbi 119 | . 2 ⊢ (Ⅎ𝑥𝜑 → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| 5 | 1, 4 | nfd 1456 | 1 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 |
| This theorem is referenced by: nfnd 1587 nfn 1588 |
| Copyright terms: Public domain | W3C validator |