ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnt GIF version

Theorem nfnt 1586
Description: If 𝑥 is not free in 𝜑, then it is not free in ¬ 𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.)
Assertion
Ref Expression
nfnt (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)

Proof of Theorem nfnt
StepHypRef Expression
1 nfnf1 1476 . 2 𝑥𝑥𝜑
2 df-nf 1390 . . 3 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
3 hbnt 1583 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
42, 3sylbi 119 . 2 (Ⅎ𝑥𝜑 → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
51, 4nfd 1456 1 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1282  wnf 1389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-ie2 1423  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390
This theorem is referenced by:  nfnd  1587  nfn  1588
  Copyright terms: Public domain W3C validator