ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf1 GIF version

Theorem nfnf1 1476
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1390 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfa1 1474 . 2 𝑥𝑥(𝜑 → ∀𝑥𝜑)
31, 2nfxfr 1403 1 𝑥𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1282  wnf 1389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  nfimd  1517  nfnt  1586  nfald  1683  equs5or  1751  sbcomxyyz  1887  nfsb4t  1931  nfnfc1  2222  sbcnestgf  2953  dfnfc2  3619  bdsepnft  10678  setindft  10760  strcollnft  10779
  Copyright terms: Public domain W3C validator