| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnf1 | GIF version | ||
| Description: 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1390 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfa1 1474 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | nfxfr 1403 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: nfimd 1517 nfnt 1586 nfald 1683 equs5or 1751 sbcomxyyz 1887 nfsb4t 1931 nfnfc1 2222 sbcnestgf 2953 dfnfc2 3619 bdsepnft 10678 setindft 10760 strcollnft 10779 |
| Copyright terms: Public domain | W3C validator |