![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfopab2 | GIF version |
Description: The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfopab2 | ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 3840 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | nfe1 1425 | . . . 4 ⊢ Ⅎ𝑦∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
3 | 2 | nfex 1568 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
4 | 3 | nfab 2223 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
5 | 1, 4 | nfcxfr 2216 | 1 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1284 ∃wex 1421 {cab 2067 Ⅎwnfc 2206 〈cop 3401 {copab 3838 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-opab 3840 |
This theorem is referenced by: opelopabsb 4015 ssopab2b 4031 dmopab 4564 rnopab 4599 funopab 4955 0neqopab 5570 |
Copyright terms: Public domain | W3C validator |