HomeHome Intuitionistic Logic Explorer
Theorem List (p. 39 of 108)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3801-3900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembreqan12rd 3801 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜓𝜑) → (𝐴𝑅𝐶𝐵𝑅𝐷))
 
Theoremnbrne1 3802 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵𝐶)
 
Theoremnbrne2 3803 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴𝐵)
 
Theoremeqbrtri 3804 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐵𝑅𝐶       𝐴𝑅𝐶
 
Theoremeqbrtrd 3805 Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremeqbrtrri 3806 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐴𝑅𝐶       𝐵𝑅𝐶
 
Theoremeqbrtrrd 3807 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴𝑅𝐶)       (𝜑𝐵𝑅𝐶)
 
Theorembreqtri 3808 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
𝐴𝑅𝐵    &   𝐵 = 𝐶       𝐴𝑅𝐶
 
Theorembreqtrd 3809 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
(𝜑𝐴𝑅𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝑅𝐶)
 
Theorembreqtrri 3810 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
𝐴𝑅𝐵    &   𝐶 = 𝐵       𝐴𝑅𝐶
 
Theorembreqtrrd 3811 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
(𝜑𝐴𝑅𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝑅𝐶)
 
Theorem3brtr3i 3812 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
𝐴𝑅𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶𝑅𝐷
 
Theorem3brtr4i 3813 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
𝐴𝑅𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶𝑅𝐷
 
Theorem3brtr3d 3814 Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
(𝜑𝐴𝑅𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶𝑅𝐷)
 
Theorem3brtr4d 3815 Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.)
(𝜑𝐴𝑅𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶𝑅𝐷)
 
Theorem3brtr3g 3816 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
(𝜑𝐴𝑅𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶𝑅𝐷)
 
Theorem3brtr4g 3817 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
(𝜑𝐴𝑅𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶𝑅𝐷)
 
Theoremsyl5eqbr 3818 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
𝐴 = 𝐵    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremsyl5eqbrr 3819 B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
𝐵 = 𝐴    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremsyl5breq 3820 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
𝐴𝑅𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremsyl5breqr 3821 B chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
𝐴𝑅𝐵    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝑅𝐶)
 
Theoremsyl6eqbr 3822 A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
(𝜑𝐴 = 𝐵)    &   𝐵𝑅𝐶       (𝜑𝐴𝑅𝐶)
 
Theoremsyl6eqbrr 3823 A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐵 = 𝐴)    &   𝐵𝑅𝐶       (𝜑𝐴𝑅𝐶)
 
Theoremsyl6breq 3824 A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
(𝜑𝐴𝑅𝐵)    &   𝐵 = 𝐶       (𝜑𝐴𝑅𝐶)
 
Theoremsyl6breqr 3825 A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
(𝜑𝐴𝑅𝐵)    &   𝐶 = 𝐵       (𝜑𝐴𝑅𝐶)
 
Theoremssbrd 3826 Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
(𝜑𝐴𝐵)       (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
 
Theoremssbri 3827 Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
𝐴𝐵       (𝐶𝐴𝐷𝐶𝐵𝐷)
 
Theoremnfbrd 3828 Deduction version of bound-variable hypothesis builder nfbr 3829. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝑅)    &   (𝜑𝑥𝐵)       (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵)
 
Theoremnfbr 3829 Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝐴    &   𝑥𝑅    &   𝑥𝐵       𝑥 𝐴𝑅𝐵
 
Theorembrab1 3830* Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
(𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
 
Theorembrun 3831 The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
(𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
 
Theorembrin 3832 The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
(𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
 
Theorembrdif 3833 The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
(𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵))
 
Theoremsbcbrg 3834 Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
 
Theoremsbcbr12g 3835* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
(𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
 
Theoremsbcbr1g 3836* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
(𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐶))
 
Theoremsbcbr2g 3837* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
(𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝑅𝐴 / 𝑥𝐶))
 
2.1.23  Ordered-pair class abstractions (class builders)
 
Syntaxcopab 3838 Extend class notation to include ordered-pair class abstraction (class builder).
class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Syntaxcmpt 3839 Extend the definition of a class to include maps-to notation for defining a function via a rule.
class (𝑥𝐴𝐵)
 
Definitiondf-opab 3840* Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
 
Definitiondf-mpt 3841* Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from 𝑥 (in 𝐴) to 𝐵(𝑥)." The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.)
(𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
 
Theoremopabss 3842* The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅
 
Theoremopabbid 3843 Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
 
Theoremopabbidv 3844* Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 15-May-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
 
Theoremopabbii 3845 Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.)
(𝜑𝜓)       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ 𝜓}
 
Theoremnfopab 3846* Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) (Unnecessary distinct variable restrictions were removed by Andrew Salmon, 11-Jul-2011.)
𝑧𝜑       𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremnfopab1 3847 The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremnfopab2 3848 The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremcbvopab 3849* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvopabv 3850* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvopab1 3851* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑧𝜑    &   𝑥𝜓    &   (𝑥 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 
Theoremcbvopab2 3852* Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
𝑧𝜑    &   𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvopab1s 3853* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑}
 
Theoremcbvopab1v 3854* Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
(𝑥 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 
Theoremcbvopab2v 3855* Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
(𝑦 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
 
Theoremcsbopabg 3856* Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
(𝐴𝑉𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
 
Theoremunopab 3857 Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
 
Theoremmpteq12f 3858 An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12dva 3859* An equality inference for the maps to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑𝐴 = 𝐶)    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12dv 3860* An equality inference for the maps to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12 3861* An equality theorem for the maps to notation. (Contributed by NM, 16-Dec-2013.)
((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq1 3862* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
(𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
 
Theoremmpteq1d 3863* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
 
Theoremmpteq2ia 3864 An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
(𝑥𝐴𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
 
Theoremmpteq2i 3865 An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
𝐵 = 𝐶       (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
 
Theoremmpteq12i 3866 An equality inference for the maps to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
𝐴 = 𝐶    &   𝐵 = 𝐷       (𝑥𝐴𝐵) = (𝑥𝐶𝐷)
 
Theoremmpteq2da 3867 Slightly more general equality inference for the maps to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremmpteq2dva 3868* Slightly more general equality inference for the maps to notation. (Contributed by Scott Fenton, 25-Apr-2012.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremmpteq2dv 3869* An equality inference for the maps to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
(𝜑𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremnfmpt 3870* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝑦𝐴𝐵)
 
Theoremnfmpt1 3871 Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
𝑥(𝑥𝐴𝐵)
 
Theoremcbvmpt 3872* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmptv 3873* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.)
(𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremmptv 3874* Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
(𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
 
2.1.24  Transitive classes
 
Syntaxwtr 3875 Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35.
wff Tr 𝐴
 
Definitiondf-tr 3876 Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 3877 (which is suggestive of the word "transitive"), dftr3 3879, dftr4 3880, and dftr5 3878. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
(Tr 𝐴 𝐴𝐴)
 
Theoremdftr2 3877* An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
(Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
 
Theoremdftr5 3878* An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
(Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
 
Theoremdftr3 3879* An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
(Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
 
Theoremdftr4 3880 An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
(Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
 
Theoremtreq 3881 Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
(𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
 
Theoremtrel 3882 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
 
Theoremtrel3 3883 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
(Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → 𝐵𝐴))
 
Theoremtrss 3884 An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
(Tr 𝐴 → (𝐵𝐴𝐵𝐴))
 
Theoremtrin 3885 The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
 
Theoremtr0 3886 The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
Tr ∅
 
Theoremtrv 3887 The universe is transitive. (Contributed by NM, 14-Sep-2003.)
Tr V
 
Theoremtriun 3888* The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
(∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
 
Theoremtruni 3889* The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
Theoremtrint 3890* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
Theoremtrintssm 3891* Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
((Tr 𝐴 ∧ ∃𝑥 𝑥𝐴) → 𝐴𝐴)
 
TheoremtrintssmOLD 3892* Obsolete version of trintssm 3891 as of 30-Oct-2021. (Contributed by Jim Kingdon, 22-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((∃𝑥 𝑥𝐴 ∧ Tr 𝐴) → 𝐴𝐴)
 
2.2  IZF Set Theory - add the Axioms of Collection and Separation
 
2.2.1  Introduce the Axiom of Collection
 
Axiomax-coll 3893* Axiom of Collection. Axiom 7 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). It is similar to bnd 3946 but uses a freeness hypothesis in place of one of the distinct variable constraints. (Contributed by Jim Kingdon, 23-Aug-2018.)
𝑏𝜑       (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑥𝑎𝑦𝑏 𝜑)
 
Theoremrepizf 3894* Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 3893. It is identical to zfrep6 3895 except for the choice of a freeness hypothesis rather than a distinct variable constraint between 𝑏 and 𝜑. (Contributed by Jim Kingdon, 23-Aug-2018.)
𝑏𝜑       (∀𝑥𝑎 ∃!𝑦𝜑 → ∃𝑏𝑥𝑎𝑦𝑏 𝜑)
 
Theoremzfrep6 3895* A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 3896 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.)
(∀𝑥𝑧 ∃!𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
 
2.2.2  Introduce the Axiom of Separation
 
Axiomax-sep 3896* The Axiom of Separation of IZF set theory. Axiom 6 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed, and with a 𝑦𝜑 condition replaced by a distinct variable constraint between 𝑦 and 𝜑).

The Separation Scheme is a weak form of Frege's Axiom of Comprehension, conditioning it (with 𝑥𝑧) so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 2814. In some texts, this scheme is called "Aussonderung" or the Subset Axiom.

(Contributed by NM, 11-Sep-2006.)

𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
 
Theoremaxsep2 3897* A less restrictive version of the Separation Scheme ax-sep 3896, where variables 𝑥 and 𝑧 can both appear free in the wff 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version was derived from the more restrictive ax-sep 3896 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
 
Theoremzfauscl 3898* Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 3896, we invoke the Axiom of Extensionality (indirectly via vtocl 2653), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.)
𝐴 ∈ V       𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))
 
Theorembm1.3ii 3899* Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 3896. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 5-Aug-1993.)
𝑥𝑦(𝜑𝑦𝑥)       𝑥𝑦(𝑦𝑥𝜑)
 
Theorema9evsep 3900* Derive a weakened version of ax-i9 1463, where 𝑥 and 𝑦 must be distinct, from Separation ax-sep 3896 and Extensionality ax-ext 2063. The theorem ¬ ∀𝑥¬ 𝑥 = 𝑦 also holds (ax9vsep 3901), but in intuitionistic logic 𝑥𝑥 = 𝑦 is stronger. (Contributed by Jim Kingdon, 25-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥 𝑥 = 𝑦
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >