| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrmo1 | GIF version | ||
| Description: 𝑥 is not free in ∃*𝑥 ∈ 𝐴𝜑. (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| nfrmo1 | ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 2356 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfmo1 1953 | . 2 ⊢ Ⅎ𝑥∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1403 | 1 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 Ⅎwnf 1389 ∈ wcel 1433 ∃*wmo 1942 ∃*wrmo 2351 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-eu 1944 df-mo 1945 df-rmo 2356 |
| This theorem is referenced by: nfdisj1 3779 |
| Copyright terms: Public domain | W3C validator |