ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreudxy GIF version

Theorem nfreudxy 2527
Description: Not-free deduction for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
Hypotheses
Ref Expression
nfreudxy.1 𝑦𝜑
nfreudxy.2 (𝜑𝑥𝐴)
nfreudxy.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfreudxy (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfreudxy
StepHypRef Expression
1 nfreudxy.1 . . 3 𝑦𝜑
2 nfcv 2219 . . . . . 6 𝑥𝑦
32a1i 9 . . . . 5 (𝜑𝑥𝑦)
4 nfreudxy.2 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeld 2234 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
6 nfreudxy.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
75, 6nfand 1500 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
81, 7nfeud 1957 . 2 (𝜑 → Ⅎ𝑥∃!𝑦(𝑦𝐴𝜓))
9 df-reu 2355 . . 3 (∃!𝑦𝐴 𝜓 ↔ ∃!𝑦(𝑦𝐴𝜓))
109nfbii 1402 . 2 (Ⅎ𝑥∃!𝑦𝐴 𝜓 ↔ Ⅎ𝑥∃!𝑦(𝑦𝐴𝜓))
118, 10sylibr 132 1 (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wnf 1389  wcel 1433  ∃!weu 1941  wnfc 2206  ∃!wreu 2350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-cleq 2074  df-clel 2077  df-nfc 2208  df-reu 2355
This theorem is referenced by:  nfreuxy  2528
  Copyright terms: Public domain W3C validator