| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfreudxy | GIF version | ||
| Description: Not-free deduction for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.) |
| Ref | Expression |
|---|---|
| nfreudxy.1 | ⊢ Ⅎ𝑦𝜑 |
| nfreudxy.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfreudxy.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfreudxy | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfreudxy.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfcv 2219 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 3 | 2 | a1i 9 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) |
| 4 | nfreudxy.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 3, 4 | nfeld 2234 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 6 | nfreudxy.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 7 | 5, 6 | nfand 1500 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 8 | 1, 7 | nfeud 1957 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 9 | df-reu 2355 | . . 3 ⊢ (∃!𝑦 ∈ 𝐴 𝜓 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 10 | 9 | nfbii 1402 | . 2 ⊢ (Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓 ↔ Ⅎ𝑥∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 11 | 8, 10 | sylibr 132 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 Ⅎwnf 1389 ∈ wcel 1433 ∃!weu 1941 Ⅎwnfc 2206 ∃!wreu 2350 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-cleq 2074 df-clel 2077 df-nfc 2208 df-reu 2355 |
| This theorem is referenced by: nfreuxy 2528 |
| Copyright terms: Public domain | W3C validator |