ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc GIF version

Theorem nfsbc 2835
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbc.1 𝑥𝐴
nfsbc.2 𝑥𝜑
Assertion
Ref Expression
nfsbc 𝑥[𝐴 / 𝑦]𝜑

Proof of Theorem nfsbc
StepHypRef Expression
1 nftru 1395 . . 3 𝑦
2 nfsbc.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfsbc.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfsbcd 2834 . 2 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑)
76trud 1293 1 𝑥[𝐴 / 𝑦]𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1285  wnf 1389  wnfc 2206  [wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-sbc 2816
This theorem is referenced by:  cbvralcsf  2964  cbvrexcsf  2965  opelopabf  4029  ralrnmpt  5330  rexrnmpt  5331  dfopab2  5835  dfoprab3s  5836  mpt2xopoveq  5878
  Copyright terms: Public domain W3C validator