| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbd | GIF version | ||
| Description: Deduction version of nfsb 1863. (Contributed by NM, 15-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfsbd.1 | ⊢ Ⅎ𝑥𝜑 |
| nfsbd.2 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
| Ref | Expression |
|---|---|
| nfsbd | ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1452 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | nfsbd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
| 4 | 3 | alimi 1384 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥Ⅎ𝑧𝜓) |
| 5 | nfsbt 1891 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜓 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | |
| 6 | 2, 4, 5 | 3syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: nfeud 1957 nfabd 2237 nfraldya 2400 nfrexdya 2401 cbvrald 10598 |
| Copyright terms: Public domain | W3C validator |