![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsb | GIF version |
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
Ref | Expression |
---|---|
nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nfsbxy 1859 | . . 3 ⊢ Ⅎ𝑧[𝑤 / 𝑥]𝜑 |
3 | 2 | nfsbxy 1859 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 |
4 | ax-17 1459 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
5 | 4 | sbco2v 1862 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
6 | 5 | nfbii 1402 | . 2 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
7 | 3, 6 | mpbi 143 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1389 [wsb 1685 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
This theorem is referenced by: hbsb 1864 sbco2yz 1878 sbcomxyyz 1887 hbsbd 1899 nfsb4or 1940 sb8eu 1954 nfeu 1960 cbvab 2201 cbvralf 2571 cbvrexf 2572 cbvreu 2575 cbvralsv 2588 cbvrexsv 2589 cbvrab 2599 cbvreucsf 2966 cbvrabcsf 2967 cbvopab1 3851 cbvmpt 3872 ralxpf 4500 rexxpf 4501 cbviota 4892 sb8iota 4894 cbvriota 5498 dfoprab4f 5839 |
Copyright terms: Public domain | W3C validator |