![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfuni | GIF version |
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 3603 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
2 | nfuni.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1461 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
4 | 2, 3 | nfrexxy 2403 | . . 3 ⊢ Ⅎ𝑥∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
5 | 4 | nfab 2223 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
6 | 1, 5 | nfcxfr 2216 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
Colors of variables: wff set class |
Syntax hints: {cab 2067 Ⅎwnfc 2206 ∃wrex 2349 ∪ cuni 3601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-uni 3602 |
This theorem is referenced by: nfiota1 4889 nfrecs 5945 nfsup 6405 |
Copyright terms: Public domain | W3C validator |