| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrexxy | GIF version | ||
| Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexya 2405 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
| Ref | Expression |
|---|---|
| nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexxy | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1395 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrexdxy 2399 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | trud 1293 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1285 Ⅎwnf 1389 Ⅎwnfc 2206 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 |
| This theorem is referenced by: r19.12 2466 sbcrext 2891 nfuni 3607 nfiunxy 3704 rexxpf 4501 abrexex2g 5767 abrexex2 5771 nfrecs 5945 fimaxre2 10109 bezoutlemmain 10387 bj-findis 10774 strcollnfALT 10781 |
| Copyright terms: Public domain | W3C validator |