![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fal | GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1288 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 606 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1290 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 628 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ⊤wtru 1285 ⊥wfal 1289 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
This theorem is referenced by: nbfal 1295 bifal 1297 falim 1298 dfnot 1302 notfal 1345 alnex 1428 csbprc 3289 bdnth 10625 |
Copyright terms: Public domain | W3C validator |