![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onin | GIF version |
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
onin | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4130 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 4130 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordin 4140 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
4 | 1, 2, 3 | syl2an 283 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ∩ 𝐵)) |
5 | simpl 107 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
6 | inex1g 3914 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∩ 𝐵) ∈ V) | |
7 | elong 4128 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) | |
8 | 5, 6, 7 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) |
9 | 4, 8 | mpbird 165 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1433 Vcvv 2601 ∩ cin 2972 Ord word 4117 Oncon0 4118 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 |
This theorem is referenced by: tfrlem5 5953 |
Copyright terms: Public domain | W3C validator |