![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eloni | GIF version |
Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
eloni | ⊢ (𝐴 ∈ On → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 4128 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | 1 | ibi 174 | 1 ⊢ (𝐴 ∈ On → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1433 Ord word 4117 Oncon0 4118 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 |
This theorem is referenced by: elon2 4131 onelon 4139 onin 4141 onelss 4142 ontr1 4144 onordi 4181 onss 4237 suceloni 4245 sucelon 4247 onsucmin 4251 onsucelsucr 4252 onintonm 4261 ordsucunielexmid 4274 onsucuni2 4307 nnord 4352 tfrlem1 5946 tfrlemisucaccv 5962 tfrlemibfn 5965 tfrlemiubacc 5967 tfrexlem 5971 sucinc2 6049 phplem4on 6353 ordiso 6447 |
Copyright terms: Public domain | W3C validator |