ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onprc GIF version

Theorem onprc 4295
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4230), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
onprc ¬ On ∈ V

Proof of Theorem onprc
StepHypRef Expression
1 ordon 4230 . . 3 Ord On
2 ordirr 4285 . . 3 (Ord On → ¬ On ∈ On)
31, 2ax-mp 7 . 2 ¬ On ∈ On
4 elong 4128 . . 3 (On ∈ V → (On ∈ On ↔ Ord On))
51, 4mpbiri 166 . 2 (On ∈ V → On ∈ On)
63, 5mto 620 1 ¬ On ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1433  Vcvv 2601  Ord word 4117  Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-sn 3404  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123
This theorem is referenced by:  sucon  4296
  Copyright terms: Public domain W3C validator