ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprcl GIF version

Theorem oprcl 3594
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
oprcl (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem oprcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex2 2615 . 2 (𝐶 ∈ ⟨𝐴, 𝐵⟩ → ∃𝑦 𝑦 ∈ ⟨𝐴, 𝐵⟩)
2 df-op 3407 . . . . . . 7 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
32eleq2i 2145 . . . . . 6 (𝑦 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
4 df-clab 2068 . . . . . 6 (𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
53, 4bitri 182 . . . . 5 (𝑦 ∈ ⟨𝐴, 𝐵⟩ ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
6 3simpa 935 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76sbimi 1687 . . . . 5 ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V))
85, 7sylbi 119 . . . 4 (𝑦 ∈ ⟨𝐴, 𝐵⟩ → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V))
9 nfv 1461 . . . . 5 𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V)
109sbf 1700 . . . 4 ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
118, 10sylib 120 . . 3 (𝑦 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1211exlimiv 1529 . 2 (∃𝑦 𝑦 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
131, 12syl 14 1 (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919  wex 1421  wcel 1433  [wsb 1685  {cab 2067  Vcvv 2601  {csn 3398  {cpr 3399  cop 3401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-v 2603  df-op 3407
This theorem is referenced by:  opth1  3991  opth  3992  0nelop  4003
  Copyright terms: Public domain W3C validator