| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orcoms | GIF version | ||
| Description: Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| orcoms.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| orcoms | ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 678 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
| 2 | orcoms.1 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: olcs 687 dcn 779 xorbin 1315 19.33b2 1560 pwssunim 4039 |
| Copyright terms: Public domain | W3C validator |