| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > po0 | GIF version | ||
| Description: Any relation is a partial ordering of the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| po0 | ⊢ 𝑅 Po ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 3342 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
| 2 | df-po 4051 | . 2 ⊢ (𝑅 Po ∅ ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
| 3 | 1, 2 | mpbir 144 | 1 ⊢ 𝑅 Po ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∀wral 2348 ∅c0 3251 class class class wbr 3785 Po wpo 4049 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-dif 2975 df-nul 3252 df-po 4051 |
| This theorem is referenced by: so0 4081 |
| Copyright terms: Public domain | W3C validator |