| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.45av | GIF version | ||
| Description: Restricted version of one direction of Theorem 19.45 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| r19.45av | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.43 2512 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | idd 21 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜑)) | |
| 3 | 2 | rexlimiv 2471 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜑) |
| 4 | 3 | orim1i 709 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| 5 | 1, 4 | sylbi 119 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 661 ∈ wcel 1433 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 df-rex 2354 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |