ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.45mv GIF version

Theorem r19.45mv 3335
Description: Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.45mv (∃𝑥 𝑥𝐴 → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.45mv
StepHypRef Expression
1 r19.9rmv 3333 . . 3 (∃𝑥 𝑥𝐴 → (𝜑 ↔ ∃𝑥𝐴 𝜑))
21orbi1d 737 . 2 (∃𝑥 𝑥𝐴 → ((𝜑 ∨ ∃𝑥𝐴 𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓)))
3 r19.43 2512 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
42, 3syl6rbbr 197 1 (∃𝑥 𝑥𝐴 → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wo 661  wex 1421  wcel 1433  wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-clel 2077  df-rex 2354
This theorem is referenced by:  ltexprlemloc  6797
  Copyright terms: Public domain W3C validator