| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ra5 | GIF version | ||
| Description: Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1516. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| ra5.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| ra5 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2353 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
| 2 | bi2.04 246 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓))) | |
| 3 | 2 | albii 1399 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ ∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓))) |
| 4 | 1, 3 | bitri 182 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓))) |
| 5 | ra5.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 5 | stdpc5 1516 | . . 3 ⊢ (∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) → (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
| 7 | 4, 6 | sylbi 119 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
| 8 | df-ral 2353 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 9 | 7, 8 | syl6ibr 160 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 ∈ wcel 1433 ∀wral 2348 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |