ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2ilem GIF version

Theorem rmo2ilem 2903
Description: Condition implying restricted "at most one." (Contributed by Jim Kingdon, 14-Jul-2018.)
Hypothesis
Ref Expression
rmo2.1 𝑦𝜑
Assertion
Ref Expression
rmo2ilem (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rmo2ilem
StepHypRef Expression
1 impexp 259 . . . . 5 (((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
21albii 1399 . . . 4 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
3 df-ral 2353 . . . 4 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
42, 3bitr4i 185 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝑦))
54exbii 1536 . 2 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
6 nfv 1461 . . . . 5 𝑦 𝑥𝐴
7 rmo2.1 . . . . 5 𝑦𝜑
86, 7nfan 1497 . . . 4 𝑦(𝑥𝐴𝜑)
98mo2r 1993 . . 3 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) → ∃*𝑥(𝑥𝐴𝜑))
10 df-rmo 2356 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
119, 10sylibr 132 . 2 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
125, 11sylbir 133 1 (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wnf 1389  wex 1421  wcel 1433  ∃*wmo 1942  wral 2348  ∃*wrmo 2351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-ral 2353  df-rmo 2356
This theorem is referenced by:  rmo2i  2904
  Copyright terms: Public domain W3C validator