ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqbidv GIF version

Theorem rabeqbidv 2596
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
Hypotheses
Ref Expression
rabeqbidv.1 (𝜑𝐴 = 𝐵)
rabeqbidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabeqbidv (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rabeqbidv
StepHypRef Expression
1 rabeqbidv.1 . . 3 (𝜑𝐴 = 𝐵)
2 rabeq 2595 . . 3 (𝐴 = 𝐵 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
31, 2syl 14 . 2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
4 rabeqbidv.2 . . 3 (𝜑 → (𝜓𝜒))
54rabbidv 2593 . 2 (𝜑 → {𝑥𝐵𝜓} = {𝑥𝐵𝜒})
63, 5eqtrd 2113 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  {crab 2352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357
This theorem is referenced by:  mpt2xopoveq  5878  supeq123d  6404
  Copyright terms: Public domain W3C validator