ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq123d GIF version

Theorem supeq123d 6404
Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
supeq123d.a (𝜑𝐴 = 𝐷)
supeq123d.b (𝜑𝐵 = 𝐸)
supeq123d.c (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
supeq123d (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))

Proof of Theorem supeq123d
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supeq123d.b . . . 4 (𝜑𝐵 = 𝐸)
2 supeq123d.a . . . . . 6 (𝜑𝐴 = 𝐷)
3 supeq123d.c . . . . . . . 8 (𝜑𝐶 = 𝐹)
43breqd 3796 . . . . . . 7 (𝜑 → (𝑥𝐶𝑦𝑥𝐹𝑦))
54notbid 624 . . . . . 6 (𝜑 → (¬ 𝑥𝐶𝑦 ↔ ¬ 𝑥𝐹𝑦))
62, 5raleqbidv 2561 . . . . 5 (𝜑 → (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ↔ ∀𝑦𝐷 ¬ 𝑥𝐹𝑦))
73breqd 3796 . . . . . . 7 (𝜑 → (𝑦𝐶𝑥𝑦𝐹𝑥))
83breqd 3796 . . . . . . . 8 (𝜑 → (𝑦𝐶𝑧𝑦𝐹𝑧))
92, 8rexeqbidv 2562 . . . . . . 7 (𝜑 → (∃𝑧𝐴 𝑦𝐶𝑧 ↔ ∃𝑧𝐷 𝑦𝐹𝑧))
107, 9imbi12d 232 . . . . . 6 (𝜑 → ((𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧) ↔ (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧)))
111, 10raleqbidv 2561 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧) ↔ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧)))
126, 11anbi12d 456 . . . 4 (𝜑 → ((∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧)) ↔ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))))
131, 12rabeqbidv 2596 . . 3 (𝜑 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧))} = {𝑥𝐸 ∣ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))})
1413unieqd 3612 . 2 (𝜑 {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧))} = {𝑥𝐸 ∣ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))})
15 df-sup 6397 . 2 sup(𝐴, 𝐵, 𝐶) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧))}
16 df-sup 6397 . 2 sup(𝐷, 𝐸, 𝐹) = {𝑥𝐸 ∣ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))}
1714, 15, 163eqtr4g 2138 1 (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1284  wral 2348  wrex 2349  {crab 2352   cuni 3601   class class class wbr 3785  supcsup 6395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-uni 3602  df-br 3786  df-sup 6397
This theorem is referenced by:  infeq123d  6429
  Copyright terms: Public domain W3C validator