ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralinexa GIF version

Theorem ralinexa 2393
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
Assertion
Ref Expression
ralinexa (∀𝑥𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem ralinexa
StepHypRef Expression
1 imnan 656 . . 3 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21ralbii 2372 . 2 (∀𝑥𝐴 (𝜑 → ¬ 𝜓) ↔ ∀𝑥𝐴 ¬ (𝜑𝜓))
3 ralnex 2358 . 2 (∀𝑥𝐴 ¬ (𝜑𝜓) ↔ ¬ ∃𝑥𝐴 (𝜑𝜓))
42, 3bitri 182 1 (∀𝑥𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wral 2348  wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-ie2 1423  ax-4 1440  ax-17 1459
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-ral 2353  df-rex 2354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator