![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > risset | GIF version |
Description: Two ways to say "𝐴 belongs to 𝐵." (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1539 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | df-rex 2354 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
3 | df-clel 2077 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | 1, 2, 3 | 3bitr4ri 211 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ∃wrex 2349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 df-clel 2077 df-rex 2354 |
This theorem is referenced by: reueq 2789 reuind 2795 0el 3268 iunid 3733 sucel 4165 reusv3 4210 fvmptt 5283 releldm2 5831 qsid 6194 rerecclap 7818 nndiv 8079 zq 8711 4fvwrd4 9150 bj-bdcel 10628 |
Copyright terms: Public domain | W3C validator |