ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  risset GIF version

Theorem risset 2394
Description: Two ways to say "𝐴 belongs to 𝐵." (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
risset (𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem risset
StepHypRef Expression
1 exancom 1539 . 2 (∃𝑥(𝑥𝐵𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
2 df-rex 2354 . 2 (∃𝑥𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥𝐵𝑥 = 𝐴))
3 df-clel 2077 . 2 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
41, 2, 33bitr4ri 211 1 (𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-clel 2077  df-rex 2354
This theorem is referenced by:  reueq  2789  reuind  2795  0el  3268  iunid  3733  sucel  4165  reusv3  4210  fvmptt  5283  releldm2  5831  qsid  6194  rerecclap  7818  nndiv  8079  zq  8711  4fvwrd4  9150  bj-bdcel  10628
  Copyright terms: Public domain W3C validator