ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recseq GIF version

Theorem recseq 5944
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recseq (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺))

Proof of Theorem recseq
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5197 . . . . . . . 8 (𝐹 = 𝐺 → (𝐹‘(𝑎𝑐)) = (𝐺‘(𝑎𝑐)))
21eqeq2d 2092 . . . . . . 7 (𝐹 = 𝐺 → ((𝑎𝑐) = (𝐹‘(𝑎𝑐)) ↔ (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
32ralbidv 2368 . . . . . 6 (𝐹 = 𝐺 → (∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)) ↔ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
43anbi2d 451 . . . . 5 (𝐹 = 𝐺 → ((𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐))) ↔ (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))))
54rexbidv 2369 . . . 4 (𝐹 = 𝐺 → (∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐))) ↔ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))))
65abbidv 2196 . . 3 (𝐹 = 𝐺 → {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))})
76unieqd 3612 . 2 (𝐹 = 𝐺 {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))})
8 df-recs 5943 . 2 recs(𝐹) = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))}
9 df-recs 5943 . 2 recs(𝐺) = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))}
107, 8, 93eqtr4g 2138 1 (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  {cab 2067  wral 2348  wrex 2349   cuni 3601  Oncon0 4118  cres 4365   Fn wfn 4917  cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-recs 5943
This theorem is referenced by:  rdgeq1  5981  rdgeq2  5982  freceq1  6002  freceq2  6003  frecsuclem1  6010  frecsuclem2  6012
  Copyright terms: Public domain W3C validator