| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recseq | GIF version | ||
| Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5197 | . . . . . . . 8 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑎 ↾ 𝑐)) = (𝐺‘(𝑎 ↾ 𝑐))) | |
| 2 | 1 | eqeq2d 2092 | . . . . . . 7 ⊢ (𝐹 = 𝐺 → ((𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) ↔ (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))) |
| 3 | 2 | ralbidv 2368 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) ↔ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))) |
| 4 | 3 | anbi2d 451 | . . . . 5 ⊢ (𝐹 = 𝐺 → ((𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) ↔ (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐))))) |
| 5 | 4 | rexbidv 2369 | . . . 4 ⊢ (𝐹 = 𝐺 → (∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) ↔ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐))))) |
| 6 | 5 | abbidv 2196 | . . 3 ⊢ (𝐹 = 𝐺 → {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))}) |
| 7 | 6 | unieqd 3612 | . 2 ⊢ (𝐹 = 𝐺 → ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))}) |
| 8 | df-recs 5943 | . 2 ⊢ recs(𝐹) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} | |
| 9 | df-recs 5943 | . 2 ⊢ recs(𝐺) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} | |
| 10 | 7, 8, 9 | 3eqtr4g 2138 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 {cab 2067 ∀wral 2348 ∃wrex 2349 ∪ cuni 3601 Oncon0 4118 ↾ cres 4365 Fn wfn 4917 ‘cfv 4922 recscrecs 5942 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-recs 5943 |
| This theorem is referenced by: rdgeq1 5981 rdgeq2 5982 freceq1 6002 freceq2 6003 frecsuclem1 6010 frecsuclem2 6012 |
| Copyright terms: Public domain | W3C validator |