ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsn GIF version

Theorem relsn 4461
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
Hypothesis
Ref Expression
relsn.1 𝐴 ∈ V
Assertion
Ref Expression
relsn (Rel {𝐴} ↔ 𝐴 ∈ (V × V))

Proof of Theorem relsn
StepHypRef Expression
1 df-rel 4370 . 2 (Rel {𝐴} ↔ {𝐴} ⊆ (V × V))
2 relsn.1 . . 3 𝐴 ∈ V
32snss 3516 . 2 (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V))
41, 3bitr4i 185 1 (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
Colors of variables: wff set class
Syntax hints:  wb 103  wcel 1433  Vcvv 2601  wss 2973  {csn 3398   × cxp 4361  Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-sn 3404  df-rel 4370
This theorem is referenced by:  relsnop  4462  relsn2m  4811
  Copyright terms: Public domain W3C validator